160 research outputs found

    The Completeness: From Henkin's Proposition to Quantum Computer

    Get PDF
    The paper addresses Leon Hen.kin's proposition as a " lighthouse", which can elucidate a vast territory of knowledge uniformly: logic, set theory, information theory, and quantum mechanics: Two strategies to infinity are equally relevant for it is as universal and t hus complete as open and thus incomplete. Henkin's, Godel's, Robert Jeroslow's, and Hartley Rogers' proposition are reformulated so that both completeness and incompleteness to be unified and thus reduced as a joint property of infinity and of all infinite sets. However, only Henkin's proposition equivalent to an internal position to infinity is consistent . This can be retraced back to set theory and its axioms, where that of choice is a key. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that some essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, these phenomena can be elucidated as both complete and incomplete, after which choice is the border between them. A special kind of invariance to the axiom of choice shared by quantum mechanics is discussed to be involved that border between the completeness and incompleteness of infinity in a consistent way. The so-called paradox of Albert Einstein, Boris Podolsky, and Nathan Rosen is interpreted entirely in the same terms only of set theory. Quantum computer can demonstrate especially clearly the privilege of the internal position, or " observer'' , or "user" to infinity implied by Henkin's proposition as the only consistent ones as to infinity. An essential area of contemporary knowledge may be synthesized from a single viewpoint

    A Formal Model of Metaphor in Frame Semantics

    Get PDF
    A formal model of metaphor is introduced. It models metaphor, first, as an interaction of “frames” according to the frame semantics, and then, as a wave function in Hilbert space. The practical way for a probability distribution and a corresponding wave function to be assigned to a given metaphor in a given language is considered. A series of formal definitions is deduced from this for: “representation”, “reality”, “language”, “ontology”, etc. All are based on Hilbert space. A few statements about a quantum computer are implied: The sodefined reality is inherent and internal to it. It can report a result only “metaphorically”. It will demolish transmitting the result “literally”, i.e. absolutely exactly. A new and different formal definition of metaphor is introduced as a few entangled wave functions corresponding to different “signs” in different language formally defined as above. The change of frames as the change from the one to the other formal definition of metaphor is interpreted as a formal definition of thought. Four areas of cognition are unified as different but isomorphic interpretations of the mathematical model based on Hilbert space. These are: quantum mechanics, frame semantics, formal semantics by means of quantum computer, and the theory of metaphor in linguistics

    The new view to whole and part in post-metaphysical context

    Get PDF
    My departed point is the assessment that plurality in broadest sense characterizing any post- (for example: post-modernity, post-metaphysical, etc.) context is first of all plurality of whole. We may speak about wholes, movement of whole, and lack of any universal whole. Part do not already belongs to whole implicitly granted and common of all other parts. Now we may speak of parts in another relation: non of parts as parts of some common of all parts whole, but parts of difference wholes, and at the same time without any universal whole common of all the wholes. The paper is devoted concretely to the influence of such a comprehension of whole upon some basic notion of physics (especially quantum mechanics and information, relativity) and mathematics, namely probability, set, movement,time. Their changes exert influence upon the fundamental pbilosophical concepts of being and time, knowledge and being-in-the-world. The new conception of fractal, and its meaning in philosophy points out, too. Constancy and always existing of whole is equivalent to Newton time, energy conservation law, local realism and ''hidden parameters" of any correlations, a union of sets exists always if the two sets are granted

    Why anything rather than nothing? The answer of quantum mechanics

    Get PDF
    Many researchers determine the question “Why anything rather than nothing?” as the most ancient and fundamental philosophical problem. Furthermore, it is very close to the idea of Creation shared by religion, science, and philosophy, e.g. as the “Big Bang”, the doctrine of “first cause” or “causa sui”, the Creation in six days in the Bible, etc. Thus, the solution of quantum mechanics, being scientific in fact, can be interpreted also philosophically, and even religiously. However, only the philosophical interpretation is the topic of the text. The essence of the answer of quantum mechanics is: 1. The creation is necessary in a rigorous mathematical sense. Thus, it does not need any choice, free will, subject, God, etc. to appear. The world exists in virtue of mathematical necessity, e.g. as any mathematical truth such as 2+2=4. 2. The being is less than nothing rather than more than nothing. So, the creation is not an increase of nothing, but the decrease of nothing: it is a deficiency in relation of nothing. Time and its “arrow” are the way of that diminishing or incompleteness to nothing

    From The Principle Of Least Action To The Conservation Of Quantum Information In Chemistry: Can One Generalize The Periodic Table?

    Get PDF
    The success of a few theories in statistical thermodynamics can be correlated with their selectivity to reality. These are the theories of Boltzmann, Gibbs, end Einstein. The starting point is Carnot’s theory, which defines implicitly the general selection of reality relevant to thermodynamics. The three other theories share this selection, but specify it further in detail. Each of them separates a few main aspects within the scope of the implicit thermodynamic reality. Their success grounds on that selection. Those aspects can be represented by corresponding oppositions. These are: macroscopic – microscopic; elements – states; relational – non-relational; and observable – theoretical. They can be interpreted as axes of independent qualities constituting a common qualitative reference frame shared by those theories. Each of them can be situated in this reference frame occupying a different place. This reference frame can be interpreted as an additional selection of reality within Carnot’s initial selection describable as macroscopic and both observable and theoretical. The deduced reference frame refers implicitly to many scientific theories independent of their subject therefore defining a general and common space or subspace for scientific theories (not for all). The immediate conclusion is: The examples of a few statistical thermodynamic theories demonstrate that the concept of “reality” is changed or generalized, or even exemplified (i.e. “de-generalized”) from a theory to another. Still a few more general suggestions referring the scientific realism debate can be added: One can admit that reality in scientific theories is some partially shared common qualitative space or subspace describable by relevant oppositions and rather independent of their subject quite different in general. Many or maybe all theories can be situated in that space of reality, which should develop adding new dimensions in it for still newer and newer theories. Its division of independent subspaces can represent the many-realities conception. The subject of a theory determines some relevant subspace of reality. This represents a selection within reality, relevant to the theory in question. The success of that theory correlates essentially with the selection within reality, relevant to its subjec

    Mamardashvili, an Observer of the Totality. About “Symbol and Consciousness”, and the cross between East and West, infinity and finiteness. . .

    Get PDF
    The paper discusses a few tensions “crucifying” the works and even personality of the great Georgian philosopher Merab Mamardashvili: East and West; human being and thought, symbol and consciousness, infinity and finiteness, similarity and differences. The observer can be involved as the correlative counterpart of the totality: An observer opposed to the totality externalizes an internal part outside. Thus the phenomena of an observer and the totality turn out to converge to each other or to be one and the same. In other words, the phenomenon of an observer includes the singularity of the solipsistic Self, which (or “who”) is the same as that of the totality. Furthermore, observation can be thought as that primary and initial action underlain by the phenomenon of an observer. That action of observation consists in the externalization of the solipsistic Self outside as some external reality. It is both a zero action and the singularity of the phenomenon of action. The main conclusions are: Mamardashvili’s philosophy can be thought both as the suffering effort to be a human being again and again as well as the philosophical reflection on the genesis of thought from itself by the same effort. Thus it can be recognized as a powerful tension between signs and symbol, between conscious structures and consciousness, between the syncretism of the East and the discursiveness of the West crucifying spiritually Georgia

    A new reading and comparative interpretation of Gödel’s completeness (1930) and incompleteness (1931) theorems

    Get PDF
    Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of infinity. The most utilized example of those generalizations is the complex Hilbert space. Any generalization of Peano arithmetic consistent to infinity, e.g. the complex Hilbert space, can serve as a foundation for mathematics to found itself and by itself

    Matter as Information. Quantum Information as Matter

    Get PDF
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time is what generates choices by itself, thus quantum information and any item in the world in final analysis. The course of time generates necessarily choices so: The future is absolutely unorderable in principle while the past is always well-ordered and thus unchangeable. The present as the mediation between them needs the well-ordered theorem equivalent to the axiom of choice. The latter guarantees the choice even among the elements of an infinite set, which is the case of quantum information. The concrete and abstract objects share information as their common base, which is quantum as to the formers and classical as to the latter. The general quantities of matter in physics, mass and energy can be considered as particular cases of quantum information. The link between choice and abstraction in set theory allows of “Hume’s principle” to be interpreted in terms of quantum mechanics as equivalence of “many” and “much” underlying quantum information. Quantum information as the universal substance of the world calls for the unity of physics and mathematics rather than that of the concrete and abstract objects and thus for a form of quantum neo-Pythagoreanism in final analysis

    Searching and Classifying

    Get PDF
    The text discusses Linnaeus’ binominal classification and the idea of mathesis unversalis of Leibniz in the ground of Michel Foucault’s conception of ‘epistema’ as well the connexion of XVIII century’s representation of universal order with viewpoints of Descartes (Rules for the Direction of the Mind) and Kant (The Critique of Pure Reason, The Critique of (the Power of) Judgment)
    corecore